

ESCo Review for Ryde Business Park

A Techno-Economic Review of a Power ESCo option for Isle of Wight Council

Ref: 2075-IoW-003

U

Contents

1	Intro	oduction	4		
	1.1	The Project	4		
	1.2	ESCo Commercial Structure	4		
2	Ass	umptions	5		
	2.1	Masterplan	5		
	2.2	Power demand assumptions	6		
3	Pov	ver ESCo	8		
4	3.1	ESCo structure	8		
4	3.2	Energy Concept	8		
4	3.3	Financial model	9		
4	3.4	Grid Services	.12		
4	3.5	Advantages and Disadvantages of a Power ESCo	.13		
4	Sun	nmary	.14		
4	4.1	Financial model	.14		
Ap	Appendix A – Preliminary Risk Matrix15				
		-	.15		

al to

	Glossary			
ASHP	Air Source Heat Pump			
ESCo	Energy Services Company			
LA	Local Authority			
D&B	Design & Build			
O&M	Operations and Maintenance			
M&B	Metering & Billing			
EVCP	Electric Vehicle Charge Point			
kWh	Kilowatt Hours			
MWh	Megawatt Hours			
GWh	Gigawatt Hours			
NIA	Nett Internal Area			
BESS	Battery Energy Storage System			
HV	High Voltage			
OPEX	Operating Expenditure			
CAPEX	Capital Expenditure			
REPEX	Replacement Expenditure			
СОР	Co-efficient Of Performance			
IRR	Internal Rate of Return			
NPV	Net Present Value			
CM	Capacity Market			
FFR	Firm Frequency Response			
DNO	Distribution Network Operator			
DUoS	Distribution Use of Service			
idno	Independent District Network Operator			
PPA	Power Purchase Agreement			

1 Introduction

1.1 The Project

- 1.1.1 Ener-Vate Consultancy Ltd and SmartKlub Ltd have undertaken a research project to examine the options for establishing an Energy Services Company (ESCo) at new developments in each of four Local Authority (LA) areas.
- 1.1.2 The LA's involved in the project are:
 - Eastleigh Borough Council,
 - Isle of Wight Council,
 - Bath and North East Somerset Council, and
 - Cornwall Council.
- 1.1.3 This report looks in more detail at the possibility of alternative approaches to decarbonising the supply of heat and power to the Ryde Business Park Extension.

1.2 ESCo Commercial Structure

- 1.2.1 A business that sells an energy service adds value to the provision of energy as a commodity by meeting some additional aspect of the customer's needs.
- 1.2.2 In its most developed form, an ESCo provides a commitment to deliver the benefits of energy to a specified level of performance and reliability whilst providing the ESCo entity itself with long-term revenue streams.
- 1.2.3 This business model is of particular interest to LA's because an ESCo with a performance contract has a strong incentive to increase the energy efficiency with which it meets its contract, and thereby drive down carbon emissions.

2 Assumptions

2.1 Masterplan

2.1.1 Ryde Business Park Masterplan c 27,000m2 development

2.1.2 This report is a stand-alone power model.

This report only considers electricity supply to common infrastructure and non-domestic consumers.

2.1.3 Power Schematic

2.2 Power demand assumptions

2.2.1 The following assumptions have been made to calculate overall electricity demand:

Power consumption at build out	Qty	Annual demand (kWh)	Total annual demand (kWh)	
Street & Traffic Lighting	1	72,000	72,000	
EVCP (7.2kW twin)	56	10,500	588,000	
Commercial (m2 NIA)	9,818	910,129	910,129	
Light Industrial (m2 NIA)	11,850	1,098,495	1,098,495	
Mixed use, local centre, retail	6,500	1,462,500	1,462,500	
Losses (5%			206,556	
TOTAL			4,337,680	

- 2.2.2 Non-domestic building demand is calculated by taking the peak demand assumptions (by property type) and assuming 30% peak load for 4,100 hours per annum.
- 2.2.3 EVCP are 7kW twin operating for 2,000 hrs per annum.
- 2.2.4 Other assumptions
 - A discount factor of 3.5% has been applied to calculate return on investment for ESCo option presented.
 - The ESCo concession term is 40 years, typically ESCo concession terms range from 25 to 50 years and up to 80 in some examples.

3 Power ESCo

3.1 ESCo structure

Image illustrates ESCo asset ownership and the flow of the various power revenues back to the ESCo.

- 3.1.1 ESCo is responsible for the funding, design, construction and operation of the energy system:
 - Battery Energy Storage System (BESS)
 - Private Wire network and connections to commercial properties
 - 4MW solar PV array
- 3.1.2 ESCo will receive all revenues associated with the energy system, including but not limited to:
 - Private Wire Electricity sales
 - Arbitrage and ancillary market services
 - Grid Export sales

3.2 Energy Concept

3.2.1 The design concept for this option is power only, heating assumed by Heat Pumps as a development cost for each property on the development.

alter.

- 3.2.3 A compound will be required for HV infrastructure and BESS, this would be c. 1,000m2
- 3.2.4 Approx. 12 acres of land will be required for 4MW ground solar PV array.
- 3.2.5 Modelling assumes first power on Jan-23.

3.3 Financial model

3.3.1 Capital Expenditure (CAPEX) breakdown and assumptions made:

ITEM	£m	Notes			
Solar Farm	3,600,000	4MW 12 Acres £900 per kW			
EVCP	105,000	56 x 7.2kW			
BESS	865,000	3MWh energy / 3MW inverter			
Prelims & set up	380,000	Design & Project Management			
TOTAL	4,950,000				

• Battery sized and specified to maximise revenue generating opportunities

Battery sizes need to be optimised in order to get satisfactory returns. This depends on their energy capacity (MWh) required to serve the private wire network load and their power capacity (MW) to provide grid services.

The grid connection costs need to be understood here. The larger the connection the more valuable the battery is to the grid, but also the more likely connection costs will be high. This can only be decided connections are being discussed with the DNO when investment ready business plans are being written.

- Capex phased in line with construction & electricity demand.
- No allowance made for any additional import capacity required.

3.3.2 Operations expenditure (OPEX) breakdown for project life and assumptions made:

ITEM	£m lifetime (uninflated)	Notes		
Solar Farm	1,520,000	£10 / MWh / annum		
BESS	420,500	£12k/yr		
EVCP	37,538	1% capex/yr		
Insurance & Legals	375,000	£10k per annum		
Metering & Billing	33,345	£20 per connection / annum		
System monitoring & CCTV	1,912,500	£60k per annum		
Land lease	382,500	£10k per annum		
Business rates	503,813	Solar & BESS asset 2% capex		
TOTAL	5,185,195			

3.3.3 Replacement expenditure (REPEX) breakdown and assumptions made:

ITEM	£m lifetime (uninflated)
BESS	827,156
TOTAL	827,156

3.3.4 Pricing assumptions

ITEM	Commercial	Assumptions
Connection fee (one off)	£12/m2	Avoided cost of DNO connection
Fixed Electricity Tariff	£1/m2	Power availability charge
All Electricity sales (kWh)	14p	
Solar power price (kWh)	Ор	
Grid Export price (kWh)	4.75p	
Grid Import price (kWh)	12.75p	

- 3.3.5 Electricity Cost & Revenue assumptions
 - The Solar Farm will be connected to the HV infrastructure and BESS via a Private Wire Network.
- 3.3.6 Financials & Sensitivity
 - For the base case scenario the power supplied to the ESCo from the solar farm is set at 3GWh per annum, this is 75% of expected annual output.
 - This is considered a balanced assumption however it may be possible to capture more of the solar generation to sell via private wire at higher prices, detailed HH modelling will provide these answers and this sensitivity is shown in the table below.

BASE MODEL ASSUMPTIONS (INFLATED)	
Discount Factor	3.50%
Concession Term	40 years
Connection Fee Income	£229,873
Variable Electricity charge income	£28,549,872
Fixed Electricity charge income	£1,234,812
Grid Services income	£12,743,076
Grid Export income	£3,860,353
CAPEX	£5,554,355
OPEX (inc commodities)	£22,518,764
REPEX	£1,604,289
IRR	8.35%
NPV	£4,266,419

SENSITIVITY	IRR	NPV
Base Case	8.35%	£4,266,419
50% Solar Output to ESCo	6.00%	£1,980,464
100% solar output to ESCo	10.16%	£6,423,970
Grid Service revenue -50%	5.52%	£1,676,090
No Grid Service Revenue	2.23%	-£936,936
Power Demand +20%	10.80%	£6,585,566
Power Demand -20%	5.82%	£1,935,464

3.4 Grid Services

3.4.1 Grid Services

Where a battery and suitable grid connection are available the incremental cost of selling grid services via an aggregator allows additional revenues to be earned. The prices for these are highly volatile depending on market liquidity and needs of the National Grid. This in turn depends on climatic conditions and customer power demands. However, the expected trend is for values to increase as society transitions from gas and oil for heating and transport respectively.

- Grid services are calculated on a per MW availability basis and include:
- Capacity Market
 Est £2k/MW/yr

CM supports standby energy capacity to ensure demand can be met by supply. Rules on this are being transitioned currently and prices are very low, but participation does not carry risk or obligations.

• TRIAD Est £15k/MW/yr

This service helps large energy users to offset their peak demands during December, January and February and so avoid large charges from National Grid. An aggregator uses demand and weather forecasts to try and calculate when the winter peaks or Triads will occur and run a battery portfolio at this time to offset this. The actual Triads are declared by National Grid retrospectively so there is no guarantee of earnings if the battery was not run at that time.

Firm Frequency Response Est £42k/MW/yr

This service supports grid frequency and can import or export energy at a stated power. This is usually bid for on a monthly basis and can be for 24 hours to a few hours. There is no guarantee of winning a contract every month and much depends on an aggregator's bidding strategy.

The detailed operation of the energy scheme, its half hourly solar generation and behind the meter demand will determine the availability of energy and power available for grid services and this cannot be determined in a pre-business case study of this type. For that reason, we provide some sensitivity analysis that assumes 50% 0% availability to illustrate impact and risk.

3.5 Advantages and Disadvantages of a Power ESCo

Advantages	•	Ability to provide a Return on Investment and secure long- term revenue stream for IoW Council.		
	•	Control over pricing regime.		
	•	Ability to optimise investment in a new Solar Farm.		
	•	Positioned well to exploit current and future revenue streams associated with decentralised & flexible power generation and storage.		
Disadvantages	•	Power ESCo's carry more complexity than heat ESCo's and there will be a transition into smart optimisation services over the first 10 years. This could be considered an opportunity also.		
	•	Grid capacity constraints for the supply of power to the electric heating systems on the development.		

4 Summary

4.1 Financial model

- 4.1.1 A case can be made for the development of a power ESCo for Ryde Business Park; however, the model assumptions are linear in nature i.e. total annual supply and demand assumptions.
- 4.1.2 In order to proceed towards an investable business case further detailed design and modelling will need to be performed with a range of profile data:
 - Half Hourly (HH) solar farm generation from the Ryde area
 - Full understanding of the available power connection capacities to the national grid for import and export.
 - Location, quantum and operating regime for EVCP's.
 - HH demand assumptions for Commercial unit types.
- 4.1.3 With this data calculations can be performed to maximise revenue streams from the BESS:
 - Arbitrage / time-shifting
 - Frequency Response
 - Reserve

Appendix A – Preliminary Risk Matrix

RISK IDENTIFICATION & MITIGATION								T - RESIDUAL RISK
Ref	Category	Risk	Potential Impact	Risk Owner	Mitigation Action (preliminary)	Prob.	Impact	Risk Score (out of 25)
1	Technical / Commercial	Grid connection import capacity upgrade possible expensive grid re-inforcements	ESCo Commercial Viability	ESCo	Urgent DNO engagement to understand grid capacity and costs for upgrade	2	5	10
2	Technical / Commercial	EVCP energy demand	ESCo Commercial Viability	ESCo	EV strategy to be agreed and reflected in commercial model	2	4	8
3	Technical / Commercial	Balance of energy demand, generation and storage	ESCo Commercial Viability	ESCo	Detailed Half Hourly modelling to underpin business case	3	4	12
4	Management	ESCo is an unregulated electricity supplier with no ability for consumer to switch	Delivery	ESCo	Balancing good consumer value with adequate supply margin is critical, Supply agreements to be carefully constructed with clear price review mechanisms. Regulatory advice to be taken from legal specialist.	1	4	4
5	Commercial	The model assumes an overall loss between generation of power and customer consumption of 5%	ESCo Commercial Viability	ESCo	Specialist M&E design of HV/LV infrastructure to provide higher certainty	3	2	6
6	Commercial	Not securing the forecast electricity contracts but as most of the base load is provided by ESCo controlled infrastructure.	ESCo Commercial Viability	ESCo	The majority of loads within the base case model are EVCP and site infrastructure.	1	5	5
7	Operation and Maintenance	Poor installation and/or operational performance by selected partner	ESCo Commercial Viability	ESCo	The Services element of the DBOM Contract should contain key Performance Indicators and should have reportable details on which the contractor is judged with penalties and termination events and consequences. The performance of the Contractor should be monitored monthly and reported at least bi-annually	2	4	8
8	Commercial	Indexation of Electricity Cost v Revenue	ESCo Commercial Viability	ESCo	Power should be supplied with an agreed mechanism of indexation such as projected BEIS Electricity predictions plus RPI. This should maintain the balance correctly. This ensures that any global effect on electricity cost effects both the buying and selling equally to maintain equalibrium. Standing Charges are also inxed to RPI.	1	3	3
9	Commercial	Bad debt.	ESCo Commercial Viability	ESCo	ESCo models typically allow a small percentage (1%-3% depending on customer profile), 1% has been allowed but can be flexed.	1	2	2
10	Technical / Commercial	Replacement Plant over the term	ESCo Commercial Viability	ESCo	The commercial model accrues capital cost for all major plant and equipment based on assumed replacement periods. This should be fully clarified through a specialist M&E design process.	2	3	6